Chapter 4: MOTIN IN 2D AND 3D

1. If the x component of vector \vec{r} is 2.6 m and the y component is -2.3 m then \vec{r} in unitvector notation is:
(A) $2.6 \hat{i}-2.3 \hat{j}$
(B) $-2.3 \hat{i}+2.6 \hat{j}$
(C) $6.2 \hat{i}+3.2 \hat{j}$
(D) $3.2 \hat{i}-6.2 \hat{j}$
2. The displacement of a particle moving from $\vec{r}_{1}=5 \hat{i}-6 \hat{j}+2 \hat{k}$ to $\vec{r}_{2}=-2 \hat{i}+6 \hat{j}+2 \hat{k}$ is
(A) $-7 \hat{i}+12 \hat{j}$
(B) $3 \hat{i}+4 \hat{k}$
(C) $7 \hat{i}-12 \hat{j}$
(D) $-3 \hat{i}-4 \hat{k}$
3. A particle goes from $\left(x_{1}=-2 m, y_{1}=3 m, z_{1}=1 m\right)$ to $\left(x_{2}=3 m, y_{2}=-1 m, z_{2}=4 m\right)$. Its displacement is:
(a) $\hat{i}+2 \hat{j}+5 \hat{k}$
(b) $5 \hat{i}-4 \hat{j}+3 \hat{k}$
(c) $-5 \hat{i}+4 \hat{j}-3 \hat{k}$
(d) $-\hat{i}-2 \hat{j}-5 \hat{k}$
4. The coordinates of a car's position as function of time is given by: $x=5 t^{2}+16$, and $y=-t^{3}$ +5 , the magnitude of position vector \bar{r} at $\mathrm{t}=2 \mathrm{~s}$ is:
(a) 5 m
(b) 1 m
(c) 2.6 m
(d) 4 m
5. The components of a car's velocity as a function of time are given by :
$\mathrm{V}_{\mathrm{x}}=2 \mathrm{t}+3$, and $\mathrm{V}_{\mathrm{y}}=4 \mathrm{t}-1$, its velocity \vec{V} at ($\left.\mathrm{t}=1 \mathrm{~s}\right)$ is:
(A) $\vec{V}=9 \hat{i}+11 \hat{j}$
(B) $\vec{V}=5 \hat{i}+3 \hat{j}$
(C) $\vec{V}=7 \hat{i}+7 \hat{j}$
(D) $\vec{V}=11 \hat{i}+15 \hat{j}$
6. Velocity is defined as:
(a) rate of change
(b) position of position with divided by time
(c) a speeding up
(d) change of time
7. The position of a particle moving on an x axis is given by: $\mathrm{X}=\mathrm{t}^{2}+2$, its average velocity in the time interval from $t=1 \mathrm{~s}$ to $\mathrm{t}=2 \mathrm{~s}$ is:
(a) $4 \mathrm{~m} / \mathrm{s}$
(b) $2 \mathrm{~m} / \mathrm{s}$
(c) $3 \mathrm{~m} / \mathrm{s}$
(d) $1 \mathrm{~m} / \mathrm{s}$
8. A car travels east at $200 \mathrm{~m} / \mathrm{s}$ and then travels west at $200 \mathrm{~m} / \mathrm{s}$, the change in its velocity is:
(a) zero
(b) $400 \mathrm{~m} / \mathrm{s}$ east
(c) $400 \mathrm{~m} / \mathrm{s}$ west
(d) $200 \mathrm{~m} / \mathrm{s}$ west
9. The position vector for a moving particle is: $\bar{r}=\hat{i}+4 t^{2} \hat{j}+t \hat{k}$, its velocity and acceleration as a function of time are:
(a) $\begin{aligned} \bar{v} & =8 t \hat{j}+\hat{k} \\ \bar{a} & =8 \hat{j}\end{aligned}$
(b) $\begin{aligned} & \bar{v}=\hat{i}+8 t \hat{j}+\hat{k} \\ & \bar{a}=8 \hat{j}+\hat{k}\end{aligned}$
(C) $\begin{aligned} \bar{v} & =8 t \hat{j} \\ \bar{a} & =\hat{i}+8 \hat{j}\end{aligned}$
(d) $\begin{aligned} \bar{v} & =8 t^{2} \hat{j}+t \hat{k} \\ \bar{a} & =8 \hat{j}\end{aligned}$
10. A particle moves in the xy plane. In which situation of the following V_{x} and V_{y} are both constant

Situation	$X(m)$	$Y(m)$
A	$2 t^{2}$	$4 t+3$
B	$4 t^{3}-2$	+3
C	$5 t$	$2 t+1$
D	$-3 t$	$t^{2}-1$

(a) A
(b) B
(c) C
(d) D
11. The components of a car's velocity as a function of time are given by $v_{x}=6 t^{2}-5, v_{y}=-$ $3 \mathrm{t}^{3}$. The acceleration components are:
(A) $a_{x}=10 t$
$a_{y}=-12 t^{2}$
(B) $a_{x}=4 t$
(C) $a_{x}=6 t$
(D) $a_{x}=12 t$
$a_{y}=-6 t^{2}$
$a_{y}=-15 t^{2}$
$a_{y}=-9 t^{2}$
12. A particle moving with initial velocity $\vec{v}_{0}=-2 \hat{i}+4 \hat{j} \mathrm{~m} / \mathrm{s}$, and acceleration $\vec{a}=-5 \hat{i}+8 \hat{j}$ $\mathrm{m} / \mathrm{s}^{2}$, the x -component v_{x} of the final velocity at $(\mathrm{t}=1 \mathrm{~s})$ is ?
(A) $-7 \mathrm{~m} / \mathrm{s}$
(B) $-17 \mathrm{~m} / \mathrm{s}$
(C) $-27 \mathrm{~m} / \mathrm{s}$
(D) $-37 \mathrm{~m} / \mathrm{s}$
13. Acceleration is defined as:
(a) rate of change
(b) speed divided
(c) rate of change
(d) change of of position with time by time of velocity with velocity time
14. A particle had a speed of $18 \mathrm{~m} / \mathrm{s}$ in the $+x$ direction and after 2.4 s its speed was $30 \mathrm{~m} / \mathrm{s}$ in the $-x$ direction. Its average acceleration during this time is:
(a) $a=\frac{-30-18}{2.4}$
(b) $a=\frac{30-18}{2.4}$
(c) $a=\frac{18+30}{2.4}$
(d) $a=\frac{18-30}{2.4}$
15. A particle moving with $\vec{v}_{0}=2 \hat{i}+5 \hat{j}$ and acceleration $\vec{a}=5 \hat{j}$. Its velocity after 2 s is:
(a) $15 \mathrm{~m} / \mathrm{s}$
(b) $12 \mathrm{~m} / \mathrm{s}$
(c) $\sqrt{29} \mathrm{~m} / \mathrm{s}$
(d) $\sqrt{43.2} \mathrm{~m} / \mathrm{s}$
16. A particle leaves the origin with initial velocity $\bar{v}_{0}=8 \hat{i}+12 \hat{j} \mathrm{~m} / \mathrm{s}$ and a constant acceleration $\bar{a}=4 \hat{i}-2 \hat{j} \mathrm{~m} / \mathrm{s}^{2}$. The particle's velocity at $\mathrm{t}=6 \mathrm{~s}$ is:
(a) $\bar{v}=24 \hat{j}$
$\bar{v}=32 \hat{i}+24 \hat{j}$
(c) $\bar{v}=32 \hat{i}$
(d) $\bar{v}=32 \hat{i}-12 \hat{j}$
17. Acceleration is equal to
(a) $\frac{d \vec{v}}{d t}$
(b) $\frac{d \vec{r}}{d t}$
(c) $\frac{d \vec{v}}{d r}$
(d) $\frac{\Delta \vec{r}}{\Delta t}$
18. The range of a ball is thrown at an angle of 30° above the horizontal with an initial speed $50 \mathrm{~m} / \mathrm{s}$ is:
(A) 318.1 m
(B) 267.3 m
(C) 373.4 m
(D) 220.9 m
19. The maximum range of a projectile is at launch angle
(A) $\theta=25^{\circ}$
(B) $\theta=35^{\circ}$
(C) $\theta=45^{\circ}$
(D) $\theta=55^{\circ}$
20. In the projectile motion the acceleration in the horizontal direction is:
(A) $19.6 \mathrm{~m} / \mathrm{s}^{2}$
(B) zero
(C) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(D) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
21. The range of a ball is thrown at an angle of 30° above the horizontal with an initial speed $50 \mathrm{~m} / \mathrm{s}$ is:
(A) 318.1 m
(B) 267.3 m
(C) 373.4 m
(D) 220.9 m
22. A large cannon fired a ball at an angle of 30° above the horizontal with initial speed 980 m the projectile will travel what horizontal distance before striking the ground?
(a) 4.3 km
(b) 8.5 km
(c) 43 km
(d) 85 km
23. A stone thrown from the top of a tall building follows a path that is:
(a) circular
(b) parabolic
(c) hyperbolic
(d) a straight line
24. Two projectiles are in flight at the same time. The acceleration of one relative to the other:
(a) is always $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(b) can be as large as $19.8 \mathrm{~m} / \mathrm{s}^{2}$
(c) can be horizontal
(d) is zero
25. A ball is thrown at V_{0} and angle θ_{0} above horizontal and returned to its initial height. The path of the ball is called:
(a) Range
(b) Trajectory
(c) Horizontal
(d) Vertical path
path
26. In question 25, the horizontal component of the ball's velocity $\mathrm{V}_{\mathrm{x} 0}$ is:
(a) $\mathrm{V}_{\mathrm{x} 0}=$ unchanged
(b) $\mathrm{V}_{\mathrm{x} 0}=$ zero
(c) $V_{x 0}=V_{0}$
(d) $V_{x 0}$ is changed
27. In question 25, at the maximum height, the vertical component of the ball's velocity V_{y} is:
(a) $\mathrm{V}_{\mathrm{y}}=\mathrm{V}_{\mathrm{x}}$
(b) $\mathrm{V}_{\mathrm{y}}=\mathrm{V}_{0}$
(c) $V_{y}=z e r o$
(d) $V_{y}=V_{0 y}$
28. A ball is thrown with initial velocity $\mathrm{v}_{0}=120 \mathrm{~m} / \mathrm{s}$ at an angle $\theta_{0}=60^{\circ}$ above the horizontal, the velocity v_{0} in unit vector notation is:
(a) $\bar{v}_{0}=104 \hat{i}+60 \hat{j}$
(b) $\bar{v}_{0}=60 \hat{i}+104 \hat{j}$
(c) $\bar{v}_{0}=60 \hat{i}$
(d) $\bar{v}_{0}=104 \hat{j}$
29. In question 28, the acceleration in the horizontal direction when $t=5 \mathrm{~s}$ is:
(a) $24 \mathrm{~m} / \mathrm{s}^{2}$
(b) $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(c) zero
(d) $600 \mathrm{~m} / \mathrm{s}^{2}$
30. In question 28, the maximum range of the ball is:
(a) 1469.4 m
(b) 1272.5 m
(c) 1649.4 m
(d) 1722.5 m
31. The horizontal range is the horizontal distance the projectile has traveled when it returns to
(a) the origin
(b) its max. height
(c) its final height
(d) its initial
height
32. You are to launch a rocket, from just above the ground, with one of the following initial velocity vectors: (1) $\bar{v}_{0}=20 \hat{i}+70 \hat{j}$, (2) $\bar{v}_{0}=-20 \hat{i}+70 \hat{j}$, (3) $\bar{v}_{0}=20 \hat{i}-70 \hat{j}$, (4) $\bar{v}_{0}=-20 \hat{i}-70 \hat{j}$. Rank the vector according to the launch speed greatest first.
(a) $4>3>2>1$
(b) $4>2>3>1$
(c) $1>2>3>4$
(d) all the same
33. In the projectile motion, the vertical velocity component v_{y}
(a)changes continuously
(b) remains
(c) equals
(d) v_{y} equals v_{x}
34. The maximum range of a projectile is at launch angle
(a) $\theta=25^{\circ}$
(b) $\theta=35^{\circ}$
(c) $\theta=45^{\circ}$
(d) $\theta=55^{\circ}$
35. In the projectile motion the horizontal velocity component v_{x} remains constant because the acceleration in the horizontal direction is:
(a) $a_{x}>0$
(b) $a_{x}=g$
(c) $a_{x}>g$
(d) $a_{x}=0$
36. The range of a ball is thrown at an angle of 30° above the horizontal with an initial speed $50 \mathrm{~m} / \mathrm{s}$ is:
(a) 318.1 m
(b) 267.3 m
(c) 373.4 m
(d) 220.9 m
37. A ball is thrown at an angle of 30° above the horizontal with an intial speed $980 \mathrm{~m} / \mathrm{s}$. The ball's range is:
(a) 4.3 km
(b) 8.5 km
(c) 43 km
(d) 85 km
38. In the projectile motion the horizontal velocity component v_{x} remains constant because the acceleration in the horizontal direction is:
(a) $a_{x}=0$
(b) $a_{x}>0$
(c) $a_{x}=g$
(d) $a_{x}>g$
39. A ball is thrown at V_{0} and angle θ_{0} above horizontal and returned to its initial height. The path of the ball is called:
(a) Range
(b) Trajectory
(c) Horizontal path
(d) Vertical path
40. In question 39, the horizontal component of the ball's velocity $\mathrm{V}_{\mathrm{x} 0}$ is:
(a)
$V_{x 0}=(b) V_{x 0}=z e r o$
(c) $V_{x 0}=V_{0}$
(d) $V_{x 0}$ is changed unchanged
41. In question 39, at the maximum height, the vertical component of the ball's velocity V_{y} is:
(a) $V_{y}=V_{x}$
(b) $V_{y}=V_{0}$
(c) $\mathrm{V}_{\mathrm{y}}=$ zero
(d) $V_{y}=V_{0 y}$
42. The period of an objects moving at a constant speed of $4 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 2 m is:
(A) $\pi \underline{s}$
(B) $2 \pi \mathrm{~s}$
(C) $4 \pi \mathrm{~s}$
(D) $8 \pi \mathrm{~s}$
43. The period of an objects moving at a constant speed of $4 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 2 m is:
(A) $\underline{\pi} \mathrm{s}$
(B) $2 \pi \mathrm{~s}$
(C) $4 \pi \mathrm{~s}$
(D) $8 \pi \mathrm{~s}$
44. A particle moves at constant speed in a circular path. The instantaneous velocity and instantaneous acceleration vectors are:
(a) both tangent to the circular path
(b) both
perpendicular to the circular path
(c) perpendicular
(d) opposite to each other
45. For a biological sample in a 1:0-m radius centrifuge to have a centripetal acceleration of 25 g , its speed must be:
(a) $11 \mathrm{~m} / \mathrm{s}$
(b) $16 \mathrm{~m} / \mathrm{s}$
(c) $50 \mathrm{~m} / \mathrm{s}$
(d) $122 \mathrm{~m} / \mathrm{s}$
46. A stone is tied to a $0.50-\mathrm{m}$ string and whirled at a constant speed of $4 \mathrm{~m} / \mathrm{s}$ in a vertical circle. Its acceleration at the top of the circle is:
(a) $9.8 \mathrm{~m} / \mathrm{s}^{2}$, up
(b) $9.8 \mathrm{~m} / \mathrm{s}^{2}$,
(c) $32 \mathrm{~m} / \mathrm{s}^{2}$, up
(d) $32 \mathrm{~m} / \mathrm{s}^{2}$, down
down
47. A stone is tied to a $0.50-\mathrm{m}$ string and whirled at a constant speed of $40 \mathrm{~m} / \mathrm{s}$ in a vertical circle. Its acceleration at the bottom of the circle is:
(a) $9.8 \mathrm{~m} / \mathrm{s}^{2}$, up
(b) $9.8 \mathrm{~m} / \mathrm{s}^{2}$,
(c) $32 \mathrm{~m} / \mathrm{s}^{2}$, up
(d) $32 \mathrm{~m} / \mathrm{s}^{2}$, down down
48. A car rounds a $20-\mathrm{m}$ radius curve at $10 \mathrm{~m} / \mathrm{s}$. The magnitude of its acceleration is:
(a) zero
(b) $0.2 \mathrm{~m} / \mathrm{s}^{2}$
(c) $5 \mathrm{~m} / \mathrm{s}^{2}$
(d) $40 \mathrm{~m} / \mathrm{s}^{2}$
49. The speed of a car moving in a circular path of radius 20 m with a centripetal acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$ is:
(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $100 \mathrm{~m} / \mathrm{s}$
(c) $4 \mathrm{~m} / \mathrm{s}$
(d) $2000 \mathrm{~m} / \mathrm{s}$
50. The period of a plane that enters a horizontal circular turn with $\bar{v}_{i}=200 \hat{i}+600 \hat{j} \mathrm{~m} / \mathrm{s}$ and 32 s later leaves the turn with $\bar{v}_{f}=200 \hat{i}+600 \hat{j}$ is:
(a) 12
(b) 16
(c) 32
(d) 64
51. The period of an objects moving at a constant speed of $4 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 2 m is:
(a) $\pi \mathrm{s}$
(b) $2 \pi \mathrm{~s}$
(c) $4 \pi \mathrm{~s}$
(d) $8 \pi \mathrm{~s}$
52. Referring to question 51 , the acceleration of the object is:
(a) $1 \mathrm{~m} / \mathrm{s}^{2}$
(b) $2 \mathrm{~m} / \mathrm{s}^{2}$
(c) $4 \mathrm{~m} / \mathrm{s}^{2}$
(d) $8 \mathrm{~m} / \mathrm{s}^{2}$
53. A particle is moving in circular path, at point P the particles velocity is: $\vec{v}=3 \hat{i}+4 \hat{j}$ at which point the velocity is $\vec{v}=-3 \hat{i}-4 \hat{j}$

(a) A
(b) B
(c) C
(d) D

