Chapter 4: MOTIN IN 2D AND 3D

			4 🔮 📲 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤
 If the x comp vector notation 	conent of vector \vec{r} is ion is:	s 2.6 m and the y co	mponent is -2.3 m then \vec{r} in unit-
(A) 2.6 $\hat{i} - 2.3 \hat{j}$	(B) – 2.3 \hat{i} + 2.6 \hat{j}	(C) 6.2 $\hat{i} + 3.2 \hat{j}$	(D) 3.2 $\hat{i} - 6.2 \hat{j}$
2. The displace	ement of a particle i	moving from $\vec{r}_1 = 5\hat{i}$	$1-6\hat{j}+2\hat{k}$ to
$\vec{r}_2 = -2\hat{i} + $	$6\hat{j}+2\hat{k}$ is		
$(\underline{A}) -7\hat{i} + 12\hat{j}$	(B) $3\hat{i} + 4\hat{k}$	(C) $7\hat{i} - 12\hat{j}$	$(D) - 3\hat{i} - 4\hat{k}$
3. A particle displacement	goes from (x ₁ =-2 nt is:	2m, y ₁ =3m, z ₁ =1m)) to $(x_2=3m, y_2=-1m, z_2=4m)$. Its
(a) $\hat{i} + 2\hat{j} + 5\hat{k}$	(b) $5\hat{i} - 4\hat{j} + 3\hat{k}$	(c) $-5\hat{i}+4\hat{j}-3\hat{k}$	(d) $-\hat{i}-2\hat{j}-5\hat{k}$
4. The coordin	ates of a car's posi	tion as function of tir	ne is given by: $x = 5t^2 + 16$, and $y = -t^3$
+5, the mag (a) 5 m	(b) 1 m	ector <i>r</i> at t=2s is: (c) 2.6 m	(d) 4 m
	€		
5. The compor	nents of a car's velo	ocity as a function of	time are given by :
$V_x=2t+3$, and V_y	e 4 t − 1, its velocit	y \vec{V} at (t= 1 s) is:	
(A) $\vec{V} = 9\hat{i} + 11\hat{j}$	(B) $\vec{V} = 5\hat{i} + 3\hat{j}$	(C) $\vec{V} = 7\hat{i} + 7\hat{j}$	(D) $\vec{V} = 11\hat{i} + 15\hat{j}$
6. Velocity is d	efined as:		
(a) rate of change of position with time	(b) position divided by time	(c) a speeding up or slowing down	(d) change of position
7. The position in the time in	of a particle movin nterval from t=1s to	g on an x axis is give t=2s is:	en by: X= t ² + 2 , its average velocity
(a) 4 m/s	(b) 2 m/s	(c) 3 m/s	(d) 1 m/s

8. A car travels east at 200 m/s and then travels west at 200 m/s, the change in its velocity is:

(a) zero (b) 400 m/s east (c) 400 m/s west (d) 200 m/s west

9. The position vector for a moving particle is: $\bar{r} = \hat{i} + 4t^2\hat{j} + t\hat{k}$, its velocity and acceleration as a function of time are:

(a) $\frac{\overline{v} = 8t\hat{j} + \hat{k}}{\overline{a} = 8\hat{j}}$ (b) $\frac{\overline{v} = \hat{i} + 8t\hat{j} + \hat{k}}{\overline{a} = 8\hat{j} + \hat{k}}$ (c) $\overline{v} = 8t\hat{j}$ (d) $\frac{\overline{v} = 8t^2\hat{j} + t\hat{k}}{\overline{a} = 8\hat{j}}$

. \$

10.A particle m	noves in the xy p	plane. In which	n situation of th	e following '	V_x and λ	/ _y are b	ooth
constant						-	

	Situation	X(m)	Y(m)
	А	2 t ²	4 t + 3
	В	4 t ³ – 2	+3
	С	5 t	2 t + 1
	D	- 3 t	t ² – 1
(a) A	(b) B	(c) C	(d) D

11. The components of a car's velocity as a function of time are given by $v_x = 6 t^2 - 5$, $v_y = -3 t^3$. The acceleration components are:

(A) a _x = 10 t	(B) a _x = 4 t	(C) a _x = 6 t	<u>(D) a_x = 12 t</u>
$a_y = -12 t^2$	$a_y = -6 t^2$	a _y = -15 t ²	<u>a_v = -9 t²</u>

12. A particle moving with initial velocity $\vec{v}_0 = -2\hat{i} + 4\hat{j}$ m/s, and acceleration $\vec{a} = -5\hat{i} + 8\hat{j}$ m/s², the x-component v_x of the final velocity at (t=1 s) is ?

<u>(A) -7 m/s</u>	(B) - 17 m/s	(C) -27 m/s	(D) -37 m/s
-------------------	--------------	-------------	-------------

13. Acceleration is defined as:

(a) rate of change (b) speed divided (c) rate of change (d) change of of position with by time of velocity with velocity time time 14. A particle had a speed of 18 m/s in the +x direction and after 2.4 s its speed was 30 m/s in the -x direction. Its average acceleration during this time is: (a) $a = \frac{-30 - 18}{24}$ (b) $a = \frac{30 - 18}{24}$ (c) $a = \frac{18 + 30}{24}$ (d) $a = \frac{18 - 30}{24}$ **15.** A particle moving with $\vec{v}_0 = 2\hat{i} + 5\hat{j}$ and acceleration $\vec{a} = 5\hat{j}$. Its velocity after 2s is: (c) $\sqrt{29}$ m/s (d) $\sqrt{43.2}$ m/s (a) 15 m/s (b) 12 m/s **16.** A particle leaves the origin with initial velocity $\bar{v}_0 = 8\hat{i} + 12\hat{j}$ m/s and a constant acceleration $\overline{a} = 4\hat{i} - 2\hat{j}$ m/s². The particle's velocity at t = 6 s is: $\bar{v} = 32\hat{i} + 24\hat{j}$ (c) $\bar{v} = 32\hat{i}$ (d) $\bar{v} = 32\hat{i} - 12\hat{j}$ (a) $\overline{v} = 24\hat{i}$ 17. Acceleration is equal to (a) $\frac{d\vec{v}}{dt}$ (b) $\frac{d\vec{r}}{dt}$ (c) $\frac{d\vec{v}}{dr}$ (d) $\frac{\Delta \vec{r}}{\Delta t}$

أعداد: أخديجة سعيد إشراف: د.هناء فرحان

	18. The range of 50 m/s is:	of a ball is thrown at	t an angle of 30° abo	ove the horizontal with an initial speed			
(A)	318.1 m	(B) 267.3 m	(C) 373.4 m	<u>(D) 220.9 m</u>			
	19. The maximu	um range of a proje	ctile is at launch ang	le			
(A)	$\theta = 25^{\circ}$	(B) θ = 35°	$(C) \theta = 45^{\circ}$	(D) $\theta = 55^{\circ}$			
	20. In the project	ctile motion the acc	eleration in the horiz	ontal direction is:			
(A) 19.6 m/s ²	(B) zero	(C) 9.8 m/s ²	(D) 4.9 m/s ²			
	21. The range of 50 m/s is:	of a ball is thrown at	t an angle of 30° abc	ove the horizontal with an initial speed			
(A)	318.1 m	(B) 267.3 m	(C) 373.4 m	<u>(D) 220.9 m</u>			
	22.A large car 980m the pr	nnon fired a ball at rojectile will travel w	an angle of 30 ⁰ at horizontal distar	pove the horizontal with initial speed ace before striking the ground?			
(a)	4.3 km	(b) 8.5 km	(c) 43 km	(d) 85 km			
	23. A stone thrown from the top of a tall building follows a path that is:						
(a)	circular	(b) parabolic	(c) hyperbolic	(d) a straight line			
	24. Two project other:	tiles are in flight at	the same time. Th	e acceleration of one relative to the			
(a)	is always 9.8 m	/s ² (b) can be as	large as 19.8 m/s ²	(c) can be horizontal (d) is zero			
	25. A ball is through the l	town at V_0 and angle ball is called:	$e \theta_0$ above horizonta	I and returned to its initial height. The			
(a)	Range	(b) Trajectory	(c) Horizontal path	(d) Vertical path			
	26. In question	25, the horizontal c	omponent of the bal	's velocity V_{x0} is:			
(a)	$V_{x0} = unchange$	ed (b) $V_{x0} = ze$	ro (c) $V_{x0} = V_0$	(d) V_{x0} is changed			
(a)	27. In question $V_y = V_x$	25, at the maximum (b) $V_y = V_0$	h height, the vertical (c) V _y = zero	component of the ball's velocity V_y is: (d) $V_y = V_{0y}$			
(a)	28. A ball is through the velocity $\overline{v}_0 = 104\hat{i} + 60\hat{j}$	bwn with initial veloc v_0 in unit vector not (b) $\overline{v}_0 = 60\hat{i} + 104\hat{j}$	city $\overline{v_0}$ =120 m/s at an tation is: (c) $\overline{v}_0 = 60\hat{i}$	angle θ_0 =60° above the horizontal, (d) $\bar{v}_0 = 104\hat{j}$			
	29. In question	28, the acceleratior	n in the horizontal dir	ection when t=5 s is:			
(a)	24 m/s ²	(b) - 9.8 m/s ²	(c) zero	(d) 600 m/s ²			

أعداد: أخديجة سعيد إشراف: د.هناء فرحان

	30. In questio	n 28, the maximum r	ange of the ball is:				
(a)	1469.4 m	(b) 1272.5 m	(c) 1649.4 m	(d) 1722.5 m			
	31. The horizonto to	ontal range is the ho	izontal distance the	projectile has traveled when it re	turns		
(a)	the origin	(b) its max. heigh	t (c) its final height	(d) its initial height			
	32. You are to velocity ve $\vec{v}_0 = -20\hat{i}$	32. You are to launch a rocket, from just above the ground, with one of the following initial velocity vectors: (1) $\bar{v}_0 = 20\hat{i} + 70\hat{j}$, (2) $\bar{v}_0 = -20\hat{i} + 70\hat{j}$, (3) $\bar{v}_0 = 20\hat{i} - 70\hat{j}$, (4) $\bar{v}_0 = -20\hat{i} - 70\hat{j}$. Rank the vector according to the launch speed greatest first.					
(a)	4 >3 > 2 > 1	(b) 4 > 2 > 3 >1	(c) 1 > 2 > 3 > 4	(d) all the same			
	33. In the proj	ectile motion, the ve	rtical velocity compor	nent v _y			
(a) cor	changes ntinuously	(b) rem constant	nains (c) equals zero	(d) v_y equals v_x			
	34. The maxir	num range of a proje	ctile is at launch ang	le			
(a)	$\theta = 25^{\circ}$	(b) $\theta = 35^{\circ}$	(c) $\theta = 45^{\circ}$	(d) $\theta = 55^{\circ}$			
	35. In the protect the acceler	jectile motion the ho eration in the horizon	rizontal velocity com tal direction is:	ponent v_x remains constant bec	ause		
(a)	a _x > 0	(b) a _x = g	(c) a _x > g	(d) $a_x = 0$			
	36. The range 50 m/s is:	e of a ball is thrown a	t an angle of 30° abc	ve the horizontal with an initial s	peed		
(a)	318.1 m	(b) 267.3 m	(c) 373.4 m	(d) 220.9 m			
	37. A ball is the ball's ranged	nrown at an angle of ge is:	30° above the horizo	ntal with an intial speed 980 m/s	. The		
(a)	4.3 km	(b) 8.5 km	(c) 43 km	(d) 85 km			
38. In the projectile motion the horizontal velocity component v _x remains constant beca the acceleration in the horizontal direction is:					ause		
(a)	$a_x = 0$	(b) a _x > 0	(c) a _x = g	(d) a _x > g			
	39. A ball is the	frown at V_0 and angle ball is called:	e θ_0 above horizonta	and returned to its initial height	. The		
(a)	Range	(b) Trajectory	(c) Horizontal path	n (d) Vertical path			
	40. In questio	n 39, the horizontal o	component of the bal	's velocity V_{x0} is:			
(a) und	V _{x0} changed	= (b) V_{x0} = zero	(c) $V_{x0} = V_0$	(d) V_{x0} is changed			

أعداد: أ. خديجة سعيد إشراف: د. هناء فرحان

41. In question 39, at the maximum height, the vertical component of the ball's velocity V_y is:					
(a) $V_y = V_x$	(b) $V_y = V_0$	(c) $V_y = zero$	(d) $V_y = V_{0y}$		
42. The period 2 m is:	of an objects moving	at a constant speed	l of 4 m/s on a circular path of radius		
(A) <u>π s</u>	(B) 2π s	(C) 4π s	(D) 8π s		
43. The period 2 m is:	of an objects moving	at a constant speed	l of 4 m/s on a circular path of radius		
(A) <u>π</u> s	(B) 2π s	(C) 4π s	(D) 8π s		
44. A particle m instantaneo	oves at constant spe us acceleration vecto	eed in a circular path ors are:	. The instantaneous velocity and		
(a) both tangent to the circular path	(b) both perpendicular to the circular path	(c) perpendicular to each other	(d) opposite to each other		
45. For a biolog 25g, its spe	ical sample in a 1:0- ed must be:	m radius centrifuge t	to have a centripetal acceleration of		
(a) 11 m/s	(b) 16 m/s	(c) 50 m/s	(d) 122 m/s		
46. A stone is ti circle. Its ac	ed to a 0.50-m string celeration at the top	and whirled at a cou of the circle is:	nstant speed of 4m/s in a vertical		
(a) 9.8 m/s ² , up	(b) 9.8 m/s ² , down	(c) 32 m/s ² , up	(d) 32 m/s², down		
47. A stone is ti circle. Its ac	ed to a 0.50-m string celeration at the bott	and whirled at a con com of the circle is:	nstant speed of 40m/s in a vertical		
(a) 9.8 m/s², up	(b) 9.8 m/s ² , down	(c) 32 m/s ² , up	(d) 32 m/s ² , down		
48. A car round	s a 20-m radius curv	e at 10m/s. The mag	pnitude of its acceleration is:		
(a) zero	(b) 0.2 m/s ²	(c) 5 m/s ²	(d) 40 m/s ²		
49. The speed of a car moving in a circular path of radius 20 m with a centripetal acceleration of 5 m/s ² is:					
(a) 10 m/s	(b) 100 m/s	(c) 4 m/s	(d) 2000 m/s		
50. The period of a plane that enters a horizontal circular turn with $\bar{v}_i = 200\hat{i} + 600\hat{j}$ m/s and 32 s later leaves the turn with $\bar{v}_f = 200\hat{i} + 600\hat{j}$ is:					
(a) 12	(b) 16	(c) 32	(d) 64		

51. The period of an objects moving at a constant speed of 4 m/s on a circular path of radius 2 m is:

52. Referring to question 51, the acceleration of the object is:

(a) 1 m/s^2 (b) 2 m/s^2 (c) 4 m/s^2 (d) 8 m/s^2

53. A particle is moving in circular path, at point P the particles velocity is: $\vec{v} = 3\hat{i} + 4\hat{j}$ at which point the velocity is $\vec{v} = -3\hat{i} - 4\hat{j}$

